Birzeit University Math. Dept. Math. 333

M. Saleh

Final Exam Solutions	First Semester 2015/2	
Student Name:	Number:	Section

Q1:40 points Mark each of the following by True or False

----T-1) If E is a nonempty subset of Z that is bounded from below, then $inf E \in E$. ---F-2) A sequence $\{x_n\}$ converges to a if and only if a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to a.

—-T- 3) Every nonempty bounded subset of Z has a maximum and a minimum.

— F- 4) If $\{x_n\}$ and $\{y_n\}$ converge to a and b, respectively, and $x_n < y_n$ for every n > N, for some fixed N, then a < b.

-F-5) Every sequence of real number has a convergent subsequence.

—T- 6) If A and B are nonempty subsets of $R, A \subseteq B$, and B has an infimum, then $inf(A) \ge inf(B)$.

—T-7) If A and B are nonempty subsets of $R, A \subseteq B$, and B has a supremum, then $sup(A) \leq sup(B)$.

- —T—8) If $\{x_n\}$ is a convergent sequence. Then $\{x_n/n\}$ converges.
- ---T--- 9) If (x_n) converges to 0, and $x_n > 0$ then $(1/x_n)$ diverges to infinity.
- ——F-10) If (x_n) has a convergent subsequence, then (x_n) is bounded.
- -----T- 11) $|a b| \ge |a| |b|$
- ——F— 12) If x < b then $x^2 < b^2$
- ——F— 13) The solution of $\frac{2x}{x+1} \leq 1$ is $x \geq 1$.
- F— 14) If (x_n) is a monotonic sequence, then (x_n) converges.
- —-T— 15) If (x_n) is a cauchy sequence, then (x_n) is bounded.
- —T—16) (x_n) converges to a iff $(x_n a)$ converges to 0.
- ——T-17) If (x_n) is bounded, then $(\frac{x_n}{n})$ converges to 0.

—-T—- 18) $\sqrt{3n+2} - \sqrt{n}$ diverges.

- —T—19) $\left(\frac{lnn}{n}\right)$ converges to 0.
- ——F-20) If (x_n) is bounded, and (y_n) converges then (x_ny_n) converges.

- ——F-21) If (x_n) , and (y_n) are cauchy then $(\frac{x_n}{y_n})$ is cauchy.
- -----F-22) If $a, b, c \in R, a < b$, then |a + c| < |b + c|.
- —T—23) If $a > 2, b = 1 + \sqrt{a-1}$, then b < a.

—-F— 24) If $A = \{1 - \frac{(-1)^n}{n} : n \in N\}$ then sup A = 1, inf A = 0

— T-25) A function $f: E \subseteq R \to R$ is continuous at a point $a \in E$ iff $\lim_{x \to a} f = f(a)$.

——F-26) A function $f: E \subseteq R \to R$ is discontinuous at a point $a \in E$ iff there exists a sequence x_n in E such that $f(x_n)$ does not converge to f(a).

—-F- 27) If f, g are uniformly continuous then fg id uniformly continuous

----F-28) If E is a bounded interval and f is continuous on E, then f is bounded.

—T– 29) If E is a bounded interval and f is uniformly continuous on E, then f is bounded.

——F-30) If $f = g^2$, and f is differentiable then g is differentiable.

—T— 31) If E is a bounded interval and f is continuous on E, then f is integrable on E.

—T- 32) If f, g are increasing functions then fog is increasing.

——F-33) If f, g are differentiable functions such that f' = g' then f = g.

- ——F-34) If |f| is a differentiable function then f is differentiable.
- ——F-35) If |f| is integrable on E then f is integrable on E.
- —T-36) If f is differentiable and f is even then f' is odd.
- ----T- 37) If f is differentiable on [a, b] then f is uniformly continuous.
- ——T–38) If f is differentiable and f is odd then f' is even.
- ——F-39) If f is integrable on [0, 1], then f is continuous
- ——F— 40)If $a \in R, A \subseteq R$, then $\sup aA = asup(A)$.
- —F-41) If f is differentiable on (a, b) then f is uniformly continuous on (a, b).

—F-42) If $A \subseteq R$ is bounded, then i = inf(A) iff for any $\epsilon > 0$ there exists $x \in A$ such that $x - \epsilon < i$.

- Q2 (70 points). This part consists of 12 Questions, answer any 10 and only 10 of them. Explain every step and write clearly
- (1) If x_n is a sequence of real numbers, $x \in R$ and $b_n \in R$ converges to 0 such that $|x_n x| < b_n$ for all $n \in Z^+$. Prove that x_n converges to x. Let $\epsilon > 0$ be given, since b_n converges to 0, so there exists $N \in Z^+$ such that $|b_n - 0| < \epsilon$, for all $n \ge N$, and since $|x_n - x| < b_n$ for all $n \in Z^+$. So $|x_n - x| < \epsilon$ for all n geq N, so x_n converge to x.
- (2) If f is continuous on R and $f(q) = 0, \forall q \in Q$. Show that f(x) = 0 for all $x \in R$. By density of rational numbers for any $x \in R$, there exists a sequence of rational numbers q_n converges to xm, and by continuity (sequential continuity), $f(x) = lim f(q_n) = f(lim q_n) = 0$

- (3) If f, g continuous on [a, b] and f(a) < g(a), f(b) > g(b). Show that there exists c ∈ (a, b) such that f(c) = g(c).
 Apply Roll's Theorem to h = f g
- (4) Show that f(x) = ¹/_x is not uniformly continuous on (0, 1) but it is uniformly continuous on [1, 2].
 x_n = ¹/_n is cauchy in (0, 1) but f(x_n) = n is not cauchy, so f is not uniformly continuous

on (0, 1)[1, 2] is closed and bounded and f is continuous on [0, 1], so f is uniformly continuous

[1, 2] is closed and bounded and f is continuous on [0, 1], so f is uniformly continuo on [0, 1]

(5) If $f: R^+ \to R^+$ is a function such that $f(\frac{x}{y}) = f(x) - f(y)$ for all $x, y \in R^+$. Prove the following

(a) f is continuous if f is continuous at 1.

First notice that f(1) = 0. Let x > 0, and y_n a sequence of positive real numbers that converges to x, then $\frac{y_n}{x}$ converges to 1 and by continuity of f at 1, and $f(y_n) - f(x) = f(\frac{y_n}{x})$ converges to f(1) = 0, so $f(y_n)$ converges to f(x)

(b) f is differentiable if f is differentiable at 1.

Similar to (a), assume f is differentiable at 1, $f'(x) = \frac{f(x+h) - f(x)}{h} = \frac{f(\frac{x+h}{x})}{h} = \frac{1}{x} \frac{f(1+\frac{h}{x})}{h/x} \rightarrow \frac{f'(1)}{x}$

(c) If f is differentiable, and f(1) = 0. What can you say about f.

$$f'(x) = a/x$$
, where $a = f'(1)$

(6) If $f : [a, b] \to R$ is continuous, $|f(x) - f(y)| \le \frac{1}{2}|x - y|$ for all $x, y \in [a, b]$. Show that there exists $c \in [a, b]$ such that f(c) = c.

Let $x_0 \in [a, b]$, and define a sequence x_n by $x_1 = f(x_0), x_{n+1} = f(x_n)$, then show x_n is cauchy, so x_n converges, say, to x^* . Show x^* is a fixed point, that is $f(x^*) = x^*$, why?. Moreover, you can show it is unique, why?.

- (7) If f is differentiable on R and $f(0) = 1, |f'(x)| < 1, \forall x \in R$. Show that $|f(x)| \le |x| + 1, \forall x \in R$. Apply MVT to f on [0, x]
- (8) Show that x + 1 ≤ e^x, ∀x ∈ R.
 for x > 0, consider f(x) = e^x x, this is increasing on [0,∞), so f(x) = e^x x > f(0) = 1, so e^x x > 1 for x ≥ 0.
 for x < 0, consider f(x) = e^x x, this is decreasing on (-∞, 0], so f(x) = e^x x > f(0) = 1, so e^x x > 1 for x ≤ 0.
- (9) If f, g differentiable on [a, b] and $f'(x) < 1 < g'(x), \forall x \in [a, b]$. Show that $|f(x) - f(a)| \le |g(x) - g(a)|, \forall x \in [a, b]$. Apply GMVT
- (10) If f: [0,2] → R is defined by f(x) = 1 if 0 ≤ x ≤ 1, f(x) = 2 if 1 < x ≤ 2. Show that f is integrable and find ∫₀² f(x)dx.
 See notes, take a partition P = {0, x₁, 1, x₂, 2}, then take U(f, P)_L(f, P) < ϵ or f is continuous on [0, 2] except at 1, and bounded on [0, 2], so f is integrable

- (11) If $f:[0,2] \to R$ is continuous. Show that f is integrable. See notes or book
- (12) If $f : [0, 2] \to R$ is a nonnegative continuous function, and $\int_0^2 f(x)dx = 0$. Show that f = 0. by contradiction, assume not say there exists $c \in [0.2]$ such that f(c) > 0, by continuity there exists $\delta > 0$ such that f(x) > 0 for all $x \in (c - \delta, c + \delta)$. So $\int_0^2 f(x)dx > \int_{c-\delta}^{c+\delta} f(x)dx > 0$.
- (13) (a) If $f:[0,2] \to R$ is a bounded function, and RI. Show $U \int_0^2 f(x) dx = L \int_0^2 f(x) dx$. See notes
- (b) If $f:[0,2] \to R$ is a bounded function. Write the definition of RI. See notes
- (c) If $f:[0,2] \to R$ is a bounded function, and RI. Write the definition of $U \int_0^2 f(x) dx$ and $L \int_0^2 f(x) dx$.

See notes