Birzeit University
 Math. Dept.
 Math. 333

M. Saleh

\qquad Number: \qquad Section \qquad

Q1:40 points Mark each of the following by True or False
-T-1) If E is a nonempty subset of Z that is bounded from below, then inf $E \in E$.

- $\mathrm{F}-2$) A sequence $\left\{x_{n}\right\}$ converges to a if and only if a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ converges to a.
--T- 3) Every nonempty bounded subset of Z has a maximum and a minimum.
——F-4) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to a and b, respectively, and $x_{n}<y_{n}$ for every $n>N$, for some fixed N, then $a<b$.
- $\mathrm{F}-5$) Every sequence of real number has a convergent subsequence.
-T- 6) If A and B are nonempty subsets of $R, A \subseteq B$, and B has an infimum, then $\inf (A) \geq \inf (B)$.
— T-7) If A and B are nonempty subsets of $R, A \subseteq B$, and B has a supremum, then $\sup (A) \leq \sup (B)$.
$-\mathrm{T}-8)$ If $\left\{x_{n}\right\}$ is a convergent sequence. Then $\left\{x_{n} / n\right\}$ converges.
--T-9) If $\left(x_{n}\right)$ converges to 0 , and $x_{n}>0$ then $\left(1 / x_{n}\right)$ diverges to infinity.
- $\mathrm{F}-10$) If $\left(x{n}\right)$ has a convergent subsequence, then $\left(x_{n}\right)$ is bounded.
-T- $\mathrm{T}-11)|a-b| \geq|a|-|b|$
-F-12) If $x<b$ then $x^{2}<b^{2}$
-F-13) The solution of $\frac{2 x}{x+1} \leq 1$ is $x \geq 1$.
- $\mathrm{F}-14)$ If $\left(x_{n}\right)$ is a monotonic sequence, then $\left(x_{n}\right)$ converges.
- T - 15) If $\left(x_{n}\right)$ is a cauchy sequence, then $\left(x_{n}\right)$ is bounded.
- T - 16) $\left(x_{n}\right)$ converges to a iff $\left(x_{n}-a\right)$ converges to 0 .
—— $\mathrm{T}-17$) If $\left(x_{n}\right)$ is bounded, then $\left(\frac{x_{n}}{n}\right)$ converges to 0 .
- $\mathrm{T}-$ - 18) $\sqrt{3 n+2}-\sqrt{n}$ diverges.
- $\mathrm{T}-19)\left(\frac{\ln n}{n}\right)$ converges to 0 .
——F-20) If $\left(x_{n}\right)$ is bounded, and $\left(y_{n}\right)$ converges then $\left(x_{n} y_{n}\right)$ converges.
- $\mathrm{F}-21)$ If $\left(x{n}\right)$, and $\left(y_{n}\right)$ are cauchy then $\left(\frac{x_{n}}{y_{n}}\right)$ is cauchy.
——F-22) If $a, b, c \in R, a<b$, then $|a+c|<|b+c|$.
-T-23) If $a>2, b=1+\sqrt{a-1}$, then $b<a$.
--F-24) If $A=\left\{1-\frac{(-1)^{n}}{n}: n \in N\right\}$ then $\sup A=1, \inf A=0$
_- T- 25) A function $f: E \subseteq R \rightarrow R$ is continuous at a point $a \in E$ iff $\lim _{x \rightarrow a} f=$ $f(a)$.
-F-26) A function $f: E \subseteq R \rightarrow R$ is discontinuous at a point $a \in E$ iff there exists a sequence x{n} in E such that $f\left(x_{n}\right)$ does not converge to $f(a)$.
——F-27) If f, g are uniformly continuous then $f g$ id uniformly continuous
——F-28) If E is a bounded interval and f is continuous on E, then f is bounded.
- $\mathrm{T}-29$) If E is a bounded interval and f is uniformly continuous on E, then f is bounded.
_- $\mathrm{F}-30$) If $f=g^{2}$, and f is differentiable then g is differentiable.
-T-31) If E is a bounded interval and f is continuous on E, then f is integrable on E.
-T- 32) If f, g are increasing functions then $f o g$ is increasing.
——F- 33) If f, g are differentiable functions such that $f^{\prime}=g^{\prime}$ then $f=g$.
——F-34) If $|f|$ is a differentiable function then f is differentiable.
_- $\mathrm{F}-35)$ If $|f|$ is integrable on E then f is integrable on E.
- T - 36) If f is differentiable and f is even then f^{\prime} is odd.
_- $\mathrm{T}-37$) If f is differentiable on $[a, b]$ then f is uniformly continuous.
$— \mathrm{~T}-38$) If f is differentiable and f is odd then f^{\prime} is even.
_- $\mathrm{F}-39$) If f is integrable on $[0,1]$, then f is continuous
$-\mathrm{F}-40$ If $a \in R, A \subseteq R$, then $\sup a A=\operatorname{asup}(A)$.
- $\mathrm{F}-41$) If f is differentiable on (a, b) then f is uniformly continuous on (a, b).
-F-42) If $A \subseteq R$ is bounded, then $i=\inf (A)$ iff for any $\epsilon>0$ there exists $x \in A$ such that $x-\epsilon<i$.

Q2 (70 points). This part consists of 12 Questions, answer any 10 and only 10 of them. Explain every step and write clearly
(1) If x_{n} is a sequence of real numbers, $x \in R$ and $b_{n} \in R$ converges to 0 such that $\left|x_{n}-x\right|<b_{n}$ for all $n \in Z^{+}$. Prove that x_{n} converges to x.
Let $\epsilon>0$ be given, since b_{n} converges to 0 , so there exists $N \in Z^{+}$such that $\left|b_{n}-0\right|<\epsilon$, for all $n \geq N$, and since $\left|x_{n}-x\right|<b_{n}$ for all $n \in Z^{+}$. So $\left|x_{n}-x\right|<\epsilon$ for all n geq N, so x_{n} converge to x.
(2) If f is continuous on R and $f(q)=0, \forall q \in Q$. Show that $f(x)=0$ for all $x \in R$.

By density of rational numbers for any $x \in R$, there exists a sequence of rational numbers q_{n} converges to $x \mathrm{~m}$, and by continuity (sequential continuity), $f(x)=\operatorname{limf}\left(q_{n}\right)=$ $f\left(\lim q_{n}\right)=0$
(3) If f, g continuous on $[a, b]$ and $f(a)<g(a), f(b)>g(b)$. Show that there exists $c \in(a, b)$ such that $f(c)=g(c)$.
Apply Roll's Theorem to $h=f-g$
(4) Show that $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$ but it is uniformly continuous on $[1,2]$.
$x_{n}=\frac{1}{n}$ is cauchy in $(0,1)$ but $f\left(x_{n}\right)=n$ is not cauchy, so f is not uniformly continuous on $(0,1)$
$[1,2]$ is closed and bounded and f is continuous on $[0,1]$, so f is uniformly continuous on $[0,1]$
(5) If $f: R^{+} \rightarrow R^{+}$is a function such that $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all $x, y \in R^{+}$. Prove the following
(a) f is continuous if f is continuous at 1 .

First notice that $f(1)=0$. Let $x>0$, and y_{n} a sequence of positive real numbers that converges to x, then $\frac{y_{n}}{x}$ converges to 1 and by continuity of f at 1 , and $f\left(y_{n}\right)-f(x)=$ $f\left(\frac{y_{n}}{x}\right)$ converges to $f(1)=0$, so $f\left(y_{n}\right)$ converges to $f(x)$
(b) f is differentiable if f is differentiable at 1 .

Similar to (a), assume f is differentiable at $1, f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}=\frac{f\left(\frac{x+h}{x}\right.}{h}=\frac{1}{x} \frac{f\left(1+\frac{h}{x}\right)}{h / x} \rightarrow$ $\frac{f^{\prime}(1)}{x}$
(c) If f is differentiable, and $f(1)=0$. What can you say about f.
$f^{\prime}(x)=a / x$, where $a=f^{\prime}(1)$
(6) If $f:[a, b] \rightarrow R$ is continuous, $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$ for all $x, y \in[a, b]$. Show that there exists $c \in[a, b]$ such that $f(c)=c$.
Let $x_{0} \in[a, b]$, and define a sequence x_{n} by $x_{1}=f\left(x_{0}\right), x_{n+1}=f\left(x_{n}\right)$, then show x_{n} is cauchy, so x_{n} converges, say, to x^{*}. Show x^{*} is a fixed point, that is $f\left(x^{*}\right)=x^{*}$, why? Moreover, you can show it is unique, why?.
(7) If f is differentiable on R and $f(0)=1,\left|f^{\prime}(x)\right|<1, \forall x \in R$.

Show that $|f(x)| \leq|x|+1, \forall x \in R$.
Apply MVT to f on $[0, x]$
(8) Show that $x+1 \leq e^{x}, \forall x \in R$.
for $x>0$, consider $f(x)=e^{x}-x$, this is increasing on $[0, \infty)$, so $f(x)=e^{x}-x>$ $f(0)=1$, so $e^{x}-x>1$ for $x \geq 0$.
for $x<0$, consider $f(x)=e^{x}-x$, this is decreasing on $(-\infty, 0]$, so $f(x)=e^{x}-x>$ $f(0)=1$, so $e^{x}-x>1$ for $x \leq 0$.
(9) If f, g differentiable on $[a, b]$ and $f^{\prime}(x)<1<g^{\prime}(x), \forall x \in[a, b]$.

Show that $|f(x)-f(a)| \leq|g(x)-g(a)|, \forall x \in[a, b]$.
Apply GMVT
(10) If $f:[0,2] \rightarrow R$ is defined by $f(x)=1$ if $0 \leq x \leq 1, f(x)=2$ if $1<x \leq 2$. Show that f is integrable and find $\int_{0}^{2} f(x) d x$.
See notes, take a partition $P=\left\{0, x_{1}, 1, x_{2}, 2\right\}$, then take $U(f, P)_{L}(f, P)<\epsilon$ or f is continuous on $[0,2]$ except at 1 , and bounded on $[0,2]$, so f is integrable
(11) If $f:[0,2] \rightarrow R$ is continuous. Show that f is integrable.

See notes or book
(12) If $f:[0,2] \rightarrow R$ is a nonnegative continuous function, and $\int_{0}^{2} f(x) d x=0$. Show that $f=0$.
by contradiction, assume not say there exists $c \in[0.2]$ such that $f(c)>0$, by continuity there exists $\delta>0$ such that $f(x)>0$ for all $x \in(c-\delta, c+\delta)$. So
$\int_{0}^{2} f(x) d x>\int_{c-\delta}^{c+\delta} f(x) d x>0$.
(13) (a) If $f:[0,2] \rightarrow R$ is a bounded function, and RI. Show $U \int_{0}^{2} f(x) d x=L \int_{0}^{2} f(x) d x$. See notes
(b) If $f:[0,2] \rightarrow R$ is a bounded function. Write the definition of RI.

See notes
(c) If $f:[0,2] \rightarrow R$ is a bounded function, and RI. Write the definition of $U \int_{0}^{2} f(x) d x$ and $L \int_{0}^{2} f(x) d x$.
See notes

